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Abstract We investigate the behaviour of resonances as a function of the coupling seen@ 
berween bound and unbound e t e s  on the basis of a simple S-matrix model. Resonance energies 
and widths am calculated for well isolated, overlapping and strongly OVerlappiDg resonance 
states. ?he formation of shom and longer time scales (trapping effect) is traced. We illumdte 
that the cross section results from an interference of all resonance states in spite of the fact that 
their lifetimes may be very different. 

’ 

1. Introduction 

High-resolution investigations of resonance phenomena in chemical, atomic and nuclear 
systems became possible in recent years. They require an adequate theoretical treatment of 
the individual resonance states since it is insufficient, generally, to calculate average values 
of, for example, the-widths. 

As an example, intensive experimental investigations of the large angle heavy-ion 
scattering have shown [I] that the standard nuclear reaction theory fails in &scribing the 
data due to the very complex reaction mechanism. The presence in the excitation functions 
of both narrow and broad structures indicates that there is an interplay of various reaction 
times, ranging from the lifetime of the compound nucleus to the time associated with shape 
resonances in the ion-ion potential. p as a conclusion, the authors of [ I ]  state ‘a challenging 
problem is the development of a reaction theoly which encompasses simultaneously both 
shorter and longer time scales so that gross, intermediate and/or fuze structures and the 
gradual dissolution of one into the other can be quantitatively described’. 

Much effort has been devoted to the theoretical investigation of the resonance 
phenomena at high level density [2-161. The main result is the following: when the 
resonances start to overlap, a redistribution of the spectroscopic values takes place. The 
widths of a few resonance states increase while the widths of the remaining ones decrease. 
The resulting separation of different time scales may amount to more than one order of 
magnitude. This so-called trapping effect is observed in the frame of different models 
and in different many-particle systems such as nuclei and molecules. In these theoretical 
investigations gross, intermediate and fine structures and the gradual dissolution of one into 
the other can be traced. 

The trapping effect occurs hierarchically [12]. In nuclear physics, this phenomenon is 
described by the doorway picture. A similar mechanism is discuss& recently in quantum 
chemistry [15,16]. The situation there corresponds to the most complicated one, in which 
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long- and short-lived resonances appear and the interferences between them cannot be 
neglected. 

It is the aim of the present paper to investigate the S-matrix landscape and the 
corresponding Argand diagrams together with the cross section as a function of the coupling 
strength (I between bound and unbound states. The coupling strength (I determines the 
degree of resonance overlapping. The S-matrix landscape obtained in our calculations 
shows very clearly the formation of different time scales beyond a critical value (I = ucdr. 
At U >> adt the short-lived resonances are seen in low-resolution experiments while the 
long-lived ones give almost no contribution to the cross section. In contrast to this, the 
long-lived resonances are relevant in high-resolution experiments where they appear on the 
background of the short-lived resonances. At (I ciCrit, short- and long-lived resonances 
appear simultaneously. 

In section 2 of the present paper, the model is sketched while the numerical results 
obtained are presented in section 3 and discussed in section 4. Some conclusions are drawn 
in the last section. 

2. Model calculations 

The model used is described, for example, in [17]. For convention, it will be outlined here. 
We are going to investigate a system of N bound states coupled to a set of A open 

reaction channels. The total Hamiltonian of the system looks like 

(1) 
where Iq;), i = 1,. . ., N, ace the wavefunctions of the N bound states, 1 ~ ~ ) .  c = 
1, . . . , A, A << N, denote the wavefunctions of A decay channels coupled to the bound 
states by an interaction V c  with. components 

v;(&) = (Y~I&VIX~(&)) i = I , .  . . , N c = 1,. . . , A .  (2) 
The coupling vectors V c  s [4c]i,l. .... N are supposed to be painvise orthogonal, so we 

neglect direct (fast) reactions. The average value of the coupling matrix element 

is a measure of the coupling strength to the channels. Here, E is the energy of the system. 
In the following, we restrict ourselves to a finite energy region where the vectors V c  

may be considered as energy-independent. Further, we restrict ourselves to time reversible 
systems. In this case both, H;j and V c  , are r e i .  

We choose the N x N matrix H by drawing the matrix elements randomly from a 
Gaussian distribution with 

For large N the spectrum is confined to the energy region IEJ 6 2 and the density of 

The coupling vectors V c  may be drawn either from a Gaussian with mean value zero 
states is given by Wigners semicircle law [19] . 

or chosen fixed so that ((vi')*) = (I. 
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The scattering matrix &b. a, b = 1, . . . , A, corresponding to the Hamiltonian (1) looks 
like [ 17, 71 

where 

Equations (5) and (6)~ allow us to find the S-matrix poles as the complex eigenvalues, 

(7) 
From these poles, the energies, Ei,~ and widths, ri, of the resonances are found. It is just 
equation (7) that is numerically treated in the present paper for a randomly chosen set of 
Hij and v.9. 

Finally, we have to emphasize that the model used work far from thresholds. It starts 
with N resonance states and neglects the direct reaction part as well as channel-channel 
coupling. 

The model described above is used in the literature in many investigations. An explicit 
expression for the two-point correlation function of S-matrix elements at different energies 
has been obtained in [ZO]. The pole structure of the S-matrix is described in [3] and 
extensively studied in [&lo] and-with particular emphasize on the one-channel case- 
in [21]. 

In the present work we investigate two other illuminating quantities namely the 
landscape of 5'-matrix elements and the corresponding Argand diagrams. We relate the 
corresponding results to those for the cross sections uab = lSnb - S,b(E)I* and show how 
the regimes of small, intermediate and strong coupling between bound states and continua 

.show up. 
As opposed to most of the previous work on this subject, we are not interested in the 

ensemble-averaged properties of the described model, but rather in typical features of a 
single Hamiltonian of the given type. Indeed, both the structure of the Argand diagrams as 
well as that one of cross sections and landscapes would be smeared out by an averaging. 
By choosing different realizations of H and V ,  we checked that the resulffi obtained by us 
and discussed below are typical. 

In the present paper we investigate S-matrix landscapes as well as total reaction cross 
sections and Argand diagrams. The Argand diagrams represent the energy-dependent 
Location of the S-matrix values in the (Re SI,, ImSl.)-plane for real vilues of energy E .  
Argand diagrams are a fairly proper tool to display the phase 6 = arctan (w) of the 
S-matrix elements. , .  

Et - $;, of an effective Hamiltonian, H;f* = f i j  -in ZL, vy 
u;*faj = ( E ~  - ;irj)aj. 

3. Results 

We have calculated the widths of the resonant states, the landscapes of IS1.(E)l,n = 
1,2,3, in the complex energy plane (i.e. the lines of equal values of lSln(E)1 in the 
(Re(E)),Im(E))-plane), the elastic and inelastic cross sections urn = 161, - SI.(E)I*, n = 
1,2,3, and Argand diagrams for N = 16 resonance states and A = 3 channels. 

The coupling strength a is varied between (z = 0.002 and a = 2.000. This corresponds 
to a i=/z % 0.15 to F/z F;: 200 (where and 2 denote the average resonance widths 
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Table 1. Mean degree of overlap i=/z of all (second column) and all but the thtee broadest 
resonances (third column) as a function of U. 

0,002 0.15 0.12 
0.010 0.n 051 
0.015 1.20 0.66 
0.020 1.63 0.75 
0.100 10.20 0.70 
2.000 202.54 0.04 

I 
03 a2 03 

a 

Figure 1. The widths r;. i = I. . . . , N. in dependence on the coupling strength e. The N = 16 
bound states are distributed randomly. The calculation is performed in steps of Aa = 0.002. 

and distances, respectively), so covering an area from well isolated to strongly overlapping 
resonances, see table 1. 

In figure 1 we have shown all ri(cr), i = 1, . . . , N, in order to illustrate the critical value 
CY = around which the redistribution of resonance widths takes place. This process of 
redistribution is followed in figure 2 by depicting three relevant quantities as functions of 
(I: the landsapes, cross sections and Argand diagrams. 

In the left part of figure 2, the motion of the poles of $1 can be seen from the 
ISlI(E)I-1andscapes, while in the middle the cross section is represented and in the right- 
hand part the Argand diagrams. A significant absorption into other channels can he 
seen, ISll(E)I c 1. Note that for all regarded cases  SI^ in the Argand diagrams moves 
counterclockwise with growing energies. This behaviour is in line with investigations of 
more realistic models carried out by Cassing et nl 1221. 

As long as the coupling strength 01 is small, (I = 0.002, all the poles of the S-matrix are 
close to the real energy axis (figure 2(a)). This region is enlarged represented in figure 3(a). 

The phase, 6, of SI1, 6 = arctan(=), is concentrated near 8 = 0 (see the right- 
hand column of figure 2). The Argand diagram makes a circle-like move in the vicinity of 
resonance energies. In correspondence to this, the moss section, a , shows almost isolated 
resonances. 
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Figure 2. landscape of ISII(E)I over the complex energy plane, the elastic coupling cross 
sections air(E) = I1 - S1l(E)l2, and Argmd diagrams for N = 16 resonances and A = 3 
open channels for different dues  of the coupling constant e: (a) CI = 0.002, (b) II = 0.010, 
(c)  e = 0.015, (d )  II = 0.020. (e) CI = 0.100, (f) a = 2.000, corresponding to F/a S 
0.15.0.77, 1.20. 1.63, 10.20 and 202.54, respectively. The contour lines in the le8 column 
correspondtoIS~I(E)I= 1.0. ..., 5.0andareequidiaant withadifferenceofAISLI(E)I=O.l 
for (aHd), while they correspond to Ihl(E)I = 1.0. ..., 20.0 with AlSll(E)I = 0.5 for (e) 
andto ISII(E)I = 1.0, ..., 81.0, AlSil(E)I =4.Ofor(f). Notethedifferent Im(E)-scaleon 
the I&-hand side of (e) and (f)! 



2968 E So6eslavsky et a1 

Figure 3. Enlarged details of figures 2(0), (e) 
and U), cnrrespondingly, showing the landscape 
of ISII(E)I near the real energy axis. Here, 
the contour lines correspond to ISII(E)I  = 
1.0 ,.... 1.2, AISII(E)I = 0.02 for (a), and to 
lSii(E)I = 1.0, .... 5.0, AISII(E)I = 0.1 for (b). 
For (c)  the contour lines run f” ISII(E)I = 
1.00 ,.... 1.10 with a step of AISII(E)I = 0.01 
and h m  ISLI(E)I = 1.1. .._, 2.0 with a step of 
AlSl!(E)I ~ 0 . 1 .  NotethedifferentIm(E) scales! 

At 01 = 0.010 (figure 2(b)), (I = 0.015 (figure 2(c)), 01 = 0.020 (figure 2(d)) three poles 
are separating from the other ones. The remaining 13 poles can be identified with a proper 
energy resolution. The cross section, all, no longer shows well isolated resonances. The 
Argand diagram occupies the whole space allowed due to the unitarity of the S-matrix. The 

,’ slopes and kinks correspond to energies, where a broad resonance passes (in Re (E) )  near 
a narrow one (e.g. near E % 0.025, E is in arbitrary units). 

The next coupling strength, (I = 0.100 (figure 2(e)) is well beyond the critical region. 
Here, the three broad resonances in the cross sections are clearly formed (see columns 2 
and 3 of table 1, where the overlap of the narrow resonances, r,,/d, is compared to the 
total overlap F/z). This corresponds to the fact that A = 3 decay channels are open. The 
landscape near the real axis is shown in figure 3(6). 

A further growing of the coupling strength, 01 = 2.000 (figure Z ( f ) ) ,  causes the formation 
of dips instead of resonances in the cross section. Three poles are well separated from the 
other ones (as a consequence of the small number of open decay channels A = 3 < N). 

-- 
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Figure 4. The inelastic reaction ROSE sections ulz(€) = lSn(€)I2 and 
uls(E) = lS~s(€)l~, and lhe corresponding Argand diagrams for N = 16 resonances, A = 3 
open decay channels and o = 2.0W. 

Their widths are much larger than the widths of the long-lived resonances near the real 
energy axis. The latter are shown in another scale in figure 3(c) (note the smaller steps 
of ISII(E)I in the region 1.00-1.10). One clearly sees, that an accurate description of 
all resonances requires two energy resolution scales, at least in the presented theoretical 
treatment. For nearly all energies the phase of S,1 is now concentrated at an argument of 
S = IT that corresponds to the formation of dips in the cross section. 

The cross sections and Argand diagrams for 01 = 2.000 corresponding to the inelas- 
tic channels 1 j 2 and 1 3 are shown in figure 4. Here, the cross sections show 
isolated resonances and the Argand diagrams are concentrated at small Re ( S d ,  Im (Sn) 
and Re (&), Im (&), respectively. Note, that direct channel-channel coupling has been 
neglected in our calculations. 

4. Discussion of the results 

The study of Argmd diagrams enables us to clarify the role of the unitarity of the S-matrix, 
SiS = 1, in the interference picture of the cross section in each reaction channel. 

For well isolated resonances, e.g. figure 2(u), the Argand diagram represents a unit circle 
around the origin in the complex .%-plane. So, in the regarded channel in the vicinity of 
the resonance energy nearly all flux is concentrated on this resonance. The interferences 
with other states are negligible. 

A growing coupling constant (Y causes a stronger interference with other resonances. 
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Near (Y = lykx it can no longer be neglected, cf figures 2(b&2(d), because an intensive 
exchange between resonances and different channels takes place. Here, the resonances start 
to overlap, cf table 1. Intermediate and fine structures appear in the cross section. 

Further growing of the coupling stlength (Y causes the phase 6 of SII preferably to be 
near 6 = x ,  see figure 2(f). This means that the resonances appear on a large background in 
the elastic channel. Due to the unitarity of the S-matrix, this is possible only by formation 
of (isolated) dips in the cross section instead of (isolated) resonances (figure 2gF)). The 
interference between short- and long-lived resonances becomes important: the averaged 
elastic cross section is not larger bur smuller than the cross section caused by the short-lived 
states alone (for a numerical example see [18]). In the inelastic channels, resonances appear. 

All three quantities investigated by us point to the reorganization taking place in 
changing the coupling strength (I from small to large values. So in the extreme cases of very 
weak and very strong coupling, crucial variations in the cross sections from resonances to 
dips can be followed up by a regroupment in the Argand diagrams. The Argand diagrams for 
these twoextremecases areconcentratedeithernearReSll(E) % 1 ornearReSIl(E) % -1, 
in agreement with the interference picture of the cross section. In any case, examining 
the Argand diagrams (energy dependence of the S-matrix phase) allows us to trace the 
interference picture. 

Regarding the landscapes of ISll(E)I one must state that in investigations with 
different resolutions, different S-matrix poles are relevant The long-lived resonances in 
figure 3(b), (c) and the short lived ones in figure 2(e), cannot be seen simultaneously. 

These results show bow gross, intermediate and fine structures arise in the cross section. 
They can be described only if the interferences between all resonances are taken into account. 

5. Conclusions 

We investigated the resonance phenomena as a function of the degree of overlap simulated 
in our calculations by the coupling strength (Y between bound and unbound states. We 
traced the picture from a situation with well isolated resonances to that one with strongly 
overlapping resonances. In any case, the theoretical description encompasses simultaneously 
both shorter and larger time scales. Most interesting is the critical region, adl i2 0.010- 
0.020, corresponding to F/z = 0.8-1.6, where the separation of different time scales starts. 
Here, the resonances overlap and the Argand diagran has a complicated structure. The cross 
section results from an interferencepicture to which all resonances give a contribution. 

We also investigated the separation of different types of S-matrix poles. Our model 
provides a good demonstration of the trapping phenomenon for the relatively low number, 
N = 16, of resonances. The results illustrate the formation of gross, intermediate and fine 
shuctures in the cross section corresponding to the existence of different time scales of the 
process. 

The existence of a hierarchy of short and long living states is known in nuclear physics 
studies, e.g. in heavy ion scattering. It is, however, also discussed in many-body scattering 
problems of molecular physics and in problems of atomic and solid-state physics, as well 
as in the scattering of electrons or light waves by disordered media. 
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